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Overview

The calculus of several variables is similar to single-variable calculus
applied to several variables one at a time. When we hold all but one of the
independent variables of a function constant and differentiate with respect
to that one variable, we get a partial derivative.

In this lecture, we see how partial derivatives are defined and interpreted
geometrically, and how to calculate them by applying the rules for
differentiating functions of a single variable.

The idea of differentiability for functions of several variables requires more
than the existence of the partial derivatives, but we will see that
differentiable functions of several variables behave in the same way as
differentiable single-variable functions.
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Partial Derivatives of a Function of Two Variables

If (x0, y0) is a point in the domain of a function f (x , y), the vertical plane
y = y0 will cut the surface z = f (x , y) in the curve z = f (x , y0).

The picture shows that the intersec-
tion of the plane y = y0 with the sur-
face z = f (x , y), viewed from above
the first quadrant of the xy -plane.
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Partial Derivatives of a Function of Two Variables

This curve is the graph of the func-
tion z = f (x , y0) in the plane y =
y0. The horizontal coordinate in this
plane is x ; the vertical coordinate is
z . The y -value is held constant at
y0, so y is not a variable.
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Partial Derivatives of a Function of Two Variables

We define the partial derivative of f with respect to x at the point (x0, y0)
as the ordinary derivative of f (x , y0) with respect to x at the point x = x0.

To distinguish partial derivatives from ordinary derivatives we use the
symbol ∂ rather than the d previously used. The partial derivative symbol
is variously pronounced as “del”, “partial dee”, “doh”, or “dabba”.

In the definition, h represents a real number, positive or negative.

Definition 1.

The partial derivative of f(x,y) with respect to x at the point (x0, y0) is

∂f

∂x

∣∣∣∣
(x0,y0)

= lim
h→0

f (x0 + h, y0)− f (x0, y0)

h
,

provided the limit exists.
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Partial Derivatives of a Function of Two Variables

An equivalent expression for the partial derivative is

d

dx
f (x , y0)

∣∣∣∣
x=x0

.

The slope of the curve z = f (x , y0) at the point P(x0, y0, f (x0, y0)) in the
plane y = y0 is the value of the partial derivative of f with respect to x at
(x0, y0).

The tangent line to the curve at P is the line in the plane y = y0 that
passes through P with this slope. The partial derivative ∂f /∂x at (x0, y0)
gives the rate of change of f with respect to x when y is held fixed at the
value y0.
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Partial Derivatives of a Function of Two Variables

We use several notations for the partial derivative:

∂f

∂x
(x0, y0) or fx(x0, y0),

∂z

∂x

∣∣∣∣
(x0,y0)

, and fx ,
∂f

∂x
, zx , or

∂z

∂x
.

The definition of the partial derivative of f (x , y) with respect to y at a
point (x0, y0) is similar to the definition of the partial derivative of f with
respect to x . We hold x fixed at the value x0 and take the ordinary
derivative of f (x0, y) with respect to y at y0.

Definition 2.

The partial derivative of f(x,y) with respect to y at the point (x0, y0) is

∂f

∂y

∣∣∣∣
(x0,y0)

=
d

dy
f (x0, y)

∣∣∣∣
y=y0

= lim
h→0

f (x0, y0 + h)− f (x0, y0)

h
,

provided the limit exists.
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Partial Derivatives of a Function of Two Variables

The intersection of the plane x = x0

with the surface z = f (x , y), viewed
from above the first quadrant of the
xy -plane.
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Partial Derivatives of a Function of Two Variables

The slope of the curve z = f (x0, y) at the point P(x0, y0, f (x0, y0)) in the
vertical plane x = x0 is the partial derivative of f with respect to y at
(x0, y0). The tangent line to the curve at P is the line in the plane x = x0

that passes through P with this slope. The partial derivative gives the rate
of change of f with respect to y at (x0, y0) when x is held fixed at the
value x0.

The partial derivative with respect to y is denoted the same way as the
partial derivative with respect to x :

∂f

∂y
(x0, y0), fy (x0, y0),

∂f

∂y
, fy .
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Partial Derivatives of a Function of Two Variables

The partial derivatives of f at (a, b) are the slopes of the tangents to C1

and C2.
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Partial Derivatives of a Function of Two Variables

The graph of f is the paraboloid z = 4− x2 − 2y2 and the vertical plane
y = 1 intersects it in the parabola z = 2− x2, y = 1. The slope of the
tangent line to this parabola at the point (1, 1, 1) is fx(1, 1) = −2.

Similarly, the curve C2 in which the plane x = 1 intersects the paraboloid
is the parabola z = 3− 2y2, x = 1, and the slope of the tangent line at
(1, 1, 1) is fy (1, 1) = −4.

P. Sam Johnson Partial Derivatives 11/122



Partial Derivatives of a Function of Two Variables

The following figures are computer-drawn counterparts to the last figures.
Part (a) shows the plane y = 1 intersecting the surface to form the curve
Ci and part (b) shows the curve Ci and the tangent line Ti , i = 1, 2.
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Partial Derivatives of a Function of Two Variables

Notice that we now have two tangent lines associated with the surface
z = f (x , y) at the point P(x0, y0, f (x0, y0)).

The tangent lines at the point
(x0, y0, f (x0, y0)) determine a plane
that, in this picture at least, appears
to be tangent to the surface.

Is the plane they determine tangent to the surface at P? We will see that
it is for the differentiable functions, we will learn how to find the tangent
plane. First we have to learn more about partial derivatives themselves.
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Calculations

The definitions of ∂f /∂x and ∂f /∂y give us two different ways of
differentiating f at a point: with respect to x in the usual way while
treating y as a constant and with respect to y in the usual way while
treating x as a constant. As the following examples show, the values of
these partial derivatives are usually different at a given point (x0, y0).

Example 3.

Find the values of ∂f /∂x and ∂f /∂y at the point (4,−5) if

f (x , y) = x2 + 3xy + y − 1.

Solution : To find ∂f /∂x , we treat y as a constant and differentiate with
respect to x :

∂f

∂x
=

∂

∂x
(x2 + 3xy + y − 1) = 2x + 3 · 1 · y + 0− 0 = 2x + 3y .

The value of ∂f /∂x at (4,−5) is 2(4) + 3(−5) = −7.

P. Sam Johnson Partial Derivatives 14/122



Solution (contd...)

To find ∂f /∂y , we treat x as a constant and differentiate with respect to
y :

∂f

∂y
=

∂

∂y
(x2 + 3xy + y − 1) = 0 + 3 · x · 1 + 1− 0 = 3x + 1.

The value of ∂f /∂y at (4,−5) is 3(4) + 1 = 13.

Example 4.

Find ∂f /∂y as a function if f (x , y) = y sin xy .

Solution : We treat x as a constant and f as a product of y and sin xy :

∂f

∂y
=

∂

∂y
(y sin xy) = y

∂

∂y
sin xy + (sin xy)

∂

∂y
(y)

= (y cos xy)
∂

∂y
(xy) + sin xy = xy cos xy + sin xy .
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Example

Example 5.

Find fx and fy as functions if f (x , y) = 2y
y+cos x .

Solution : We treat f as a quotient. With y held constant, we get

fx =
∂

∂x
(

2y

y + cos x
) =

(y + cos x) ∂
∂x (2y)− 2y ∂

∂x (y + cos x)

(y + cos x)2

=
(y + cos x)(0)− 2y(− sin x)

(y + cos x)2
=

2y sin x

(y + cos x)2
.

With x held constant, we get

fy =
∂

∂y
(

2y

y + cos x
) =

(y + cos x) ∂
∂y (2y)− 2y ∂

∂y (y + cos x)

(y + cos x)2

=
(y + cos x)(2)− 2y(1)

(y + cos x)2
=

2 cos x

(y + cos x)2
.
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Solution

Implicit differentiation works for partial derivatives the way it works for
ordinary derivatives, as the next example illustrates.

Example 6.

Find ∂z/∂x if the equation yz − ln z = x + y defines z as a function of the
two independent variables x and y and the partial derivative exists.

We differentiate both sides of the equation with respect to x , holding y
constant and treating z as a differentiable function of x :

∂

∂x
(yz)− ∂

∂x
ln z =

∂x

∂x
+
∂y

∂x(
y − 1

z

)
∂z

∂x
= 1

∂z

∂x
=

z

yz − 1
.
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Example

Example 7.

The plane x = 1 intersects the paraboloid z = x2 + y2 in a parabola. Find
the slope of the tangent to the parabola at (1, 2, 5).

The tangent to the curve of intersec-
tion of the plane x = 1 and surface
z = x2 + y2 at the point (1, 2, 5).
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Solution

The slope is the value of the partial derivative ∂z/∂y at (1, 2):

∂z

∂y

∣∣∣∣
(1,2)

=
∂

∂y
(x2 + y2)

∣∣∣∣
(1,2)

= 2y |(1,2) = 2(2) = 4.

As a check, we can treat the parabola as the graph of the single-variable
function z = (1)2 + y2 = 1 + y2 in the plane x = 1 and ask for the slope
at y = 2. The slope, calculated now as an ordinary derivative, is

dz

dy

∣∣∣∣
y=2

=
d

dy
(1 + y2)

∣∣∣∣
y=2

= 2y |y=2 = 4.
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Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two
independent variables are like the definitions for functions of two variables.
They are ordinary derivatives with respect to one variable, taken while the
other independent variables are held constant.

Example 8.

If x , y , and z are independent variables and

f (x , y , z) = x sin(y + 3z),

then

∂f

∂z
=

∂

∂z
[x sin(y + 3z)] = x

∂

∂z
sin(y + 3z)

= x cos(y + 3z)
∂

∂z
(y + 3z) = 3x cos(y + 3z).
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Example

Example 9.

If resistors of R1,R2, and R3 ohms are connected in parallel to make an
R-ohm resistor, the value of R can be found from the equation

1

R
=

1

R1
+

1

R2
+

1

R3
.

Find the value of ∂R/∂R2 when R1 = 30, R2 = 45, and R3 = 90 ohms.

Resistors arranged this way are said to be connected
in parallel. Each resistor lets a portion of the current
through. Their equivalent resistance R is calculated
with the formula

1

R
=

1

R1
+

1

R2
+

1

R3
.
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Solution

To find ∂R/∂R2, we treat R1 and R3 as constants and, using implicit
differentiation, differentiate both sides of the equation with respect to R2:

∂

∂R2

(
1

R

)
=

∂

∂R2

(
1

R1
+

1

R2
+

1

R3

)
− 1

R2

∂R

∂R2
= 0− 1

R2
2

+ 0

∂R

∂R2
=

R2

R2
2

=

(
R

R2

)2

.
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Solution (contd...)

When R1 = 30, R2 = 45, and R3 = 90,

1

R
=

1

30
+

1

45
+

1

90
=

3 + 2 + 1

90
=

6

90
=

1

15
,

so R = 15 and

∂R

∂R2
=

(
15

45

)2

=

(
1

3

)2

=

(
1

9

)
.

Thus at the given values, a small change in the resistance R2 leads to a
change in R about 1/9th as large.
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Partial Derivatives and Continuity

A function f (x , y) can have partial derivatives with respect to both
x and y at a point without the function being continuous there.

This is different from functions of a single variable, where the
existence of a derivative implies continuity.

We shall see that if the partial derivatives of f (x , y) exist and are
continuous throughout a disk centered at (x0, y0), however, then f is
continuous at (x0, y0).
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Partial Derivatives and Continuity

Example 10.

Let f (x , y) =

{
0, xy 6= 0

1, xy = 0.

(a) Find the limit of f as (x , y) approaches (0, 0) along the line y = x .

(b) Prove that f is not continuous at the origin.

(c) Show that both partial derivatives ∂f /∂x and ∂f /∂y exist at the
origin.

The graph of f (x , y) =

{
0, xy 6= 0

1, xy = 0
consists of

the linesL1 and L2 and the four open quadrants of
the xy -plane. The function has partial derivatives
at the origin but is not continuous there.

P. Sam Johnson Partial Derivatives 25/122



Solution

(a) Since f (x , y) is constantly zero along the line y = x (except at the
origin), we have

lim
(x ,y)→(0,0)

f (x , y)

∣∣∣∣
y=x

= lim
(x ,y)→(0,0)

0 = 0.

(b) Since f (0, 0) = 1, the limit in part (a) proves that f is not continuous
at (0, 0).

(c) To find ∂f /∂x at (0, 0), we hold y fixed at y = 0. Then f (x , y) = 1
for all x , and the graph of f is the line L1 in the figure. The slope of
this line at any x is ∂f /∂x = 0. In particular, ∂f /∂x = 0 at (0, 0).
Similarly, ∂f /∂y is the slope of line L2 at any y , so ∂f /∂y = 0 at
(0, 0).
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Relation Between Differentiability and Continuity

The above example suggests that we need a stronger requirement
for differentiability in higher dimensions than the mere existence of
the partial derivatives.

We shall define differentiability for functions of two variables (which
is slightly more complicated than for single-variable functions) and
then revisit the connection to continuity.
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Second-Order Partial Derivatives

When we differentiate a function f (x , y) twice, we produce its
second-order derivatives. These derivatives are usually denoted by

∂2f

∂x2
or fxx ,

∂2f

∂y2
or fyy ,

∂2f

∂x∂y
or fyx , and

∂2f

∂y∂x
or fxy .

The defining equations are

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

and so on.

Notice the order in which the mixed partial derivatives are taken:

∂2f

∂x∂y
Differentiate first with respect to y , then with respect to x .

fyx = (fy )x Means the same thing.
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Example

Example 11.

If f (x , y) = x cos y + yex , find the second-order derivatives

∂2f

∂x2
,

∂2f

∂y∂x
,

∂2f

∂y2
, and

∂2f

∂x∂y
.

Solution : The first step is to calculate both first partial derivatives.

∂f

∂x
=

∂

∂x
(x cos y + yex)

∂f

∂y
=
∂

∂y
(x cos y + yex)

= cos y + yex =− x sin y + ex

Now we find both partial derivatives of each first partial:

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
= − sin y + ex

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
= − sin y + ex

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
= yex .

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
= −x cos y .
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The Mixed Derivative Theorem

We have noticed in the above example that the mixed second-order partial
derivatives

∂2f

∂y∂x
and

∂2f

∂x∂y

are equal. This is not a coincidence. They must be equal whenever
f , fx , fy , fxy , and fyx are continuous, as stated in the following theorem.

Theorem 12 (The Mixed Derivative Theorem).

If f (x , y) and its partial derivatives fx , fy , fxy , and fyx are defined
throughout an open region containing a point (a, b) and are all continuous
at (a, b), then

fxy (a, b) = fyx(a, b).
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Clairaut’s Theorem

The Mixed Derivative Theorem is also known as Clairaut’s Theorem,
named after the French mathematician Alexis Clairaut who discovered it.

The Mixed Derivative Theorem says that to calculate a mixed
second-order derivative, we may differentiate in either order, provided the
continuity conditions are satisfied. This ability to proceed in different order
sometimes simplifies our calculations.

Example 13.

Find ∂2w/∂x∂y if

w = xy +
ey

y2 + 1
.
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Solution

The symbol ∂2w/∂x∂y tells us to differentiate first with respect to y and
then with respect to x . However, if we interchange the order of
differentiation and differentiate first with respect to x we get the answer
more quickly. In two steps,

∂w

∂x
= y and

∂2w

∂y∂x
= 1.

If we differentiate first with respect to y , we obtain ∂2w/∂x∂y = 1 as
well. We can differentiate in either order because the conditions of “The
Mixed Derivative Theorem” hold for w at all points (x0, y0).
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Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial
derivatives, because these appear the most frequently in applications, there
is no theoretical limit to how many times we can differentiate a function as
long as the derivatives involved exist. Thus, we get third- and fourth-order
derivatives denoted by symbols like

∂3f

∂x∂y2
= fyyx ,

∂4f

∂x2∂y2
= fyyxx ,

and so on. As with second-order derivatives, the order of differentiation is
immaterial as long as all the derivatives through the order in question are
continuous.
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Example 14.

Find fyxyz if f (x , y , z) = 1− 2xy2z + x2y .

Solution : We first differentiate with respect to the variable y , then x ,
then y again, and finally with respect to z :

fy = −4xyz + x2

fyx = −4yz + 2x

fyxy = −4z

fyxyz = −4.
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Differentiability

The starting point for differentiability is not the difference quotient we saw
in studying single-variable functions, but rather the idea of increment.
Recall that if y = f (x) is differentiable at x = x0, then the change in the
value of f that results from changing x from x0 to x0 + ∆x is given by an
equation of the form

∆y = f ′(x0)∆x + ε∆x

in which ε→ 0 as ∆x → 0.

For functions of two variables, the analogous property becomes the
definition of differentiability.

P. Sam Johnson Partial Derivatives 35/122



Increment Theorem for Functions of Two Variables

Theorem 15 (The Increment Theorem for Functions of Two
Variables).

Suppose that the first partial derivatives of f (x , y) are defined throughout
an open region R containing the point (x0, y0) and that fx and fy are
continuous at (x0, y0). Then the change

∆z = f (x0 + ∆x , y0 + ∆y)− f (x0, y0)

in the value of f that results from moving from (x0, y0) to another point
(x0 + ∆x , y0 + ∆y) in R satisfies an equation of the form

∆z = fx(x0, y0)∆x + fy (x0, y0)∆y + ε1∆x + ε2∆y

in which each of ε1, ε2 → 0 as both ∆x ,∆y → 0.
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Differentiable Functions

Definition 16.

A function z = f (x , y) is differentiable at (x0, y0) if fx(x0, y0) and
fy (x0, y0) exist and ∆z satisfies an equation of the form

∆z = fx(x0, y0)∆x + fy (x0, y0)∆y + ε1∆x + ε2∆y

in which each of ε1, ε2 → 0 as both ∆x ,∆y → 0. We call f differentiable
if it is differentiable at every point in its domain, and say that its graph is
a smooth surface.

Because of this definition, an immediate corollary of “Increment Theorem
for Functions of Two Variables” is that a function is differentiable at
(x0, y0) if its first partial derivatives are continuous there.
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Differentiable Functions

Corollary 17.

If the partial derivatives fx and fy of a function f (x , y) are continuous
throughout an open region R, then f is differentiable at every point of R.

If z = f (x , y) is differentiable, then the definition of differentiability
assures that ∆z = f (x0 + ∆x , y0 + ∆y)− f (x0, y0) approaches 0 as ∆x
and ∆y approach 0. This tells us that a function of two variables is
continuous at every point where it is differentiable.

Theorem 18 (Differentiability Implies Continuity).

If a function f (x , y) is differentiable at (x0, y0), then f is continuous at
(x0, y0).
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Remark

A function f (x , y) must be continuous at a point (x0, y0) if fx and fy are
continuous throughout an open region containing (x0, y0).

Remember, however, that it is still possible for a function of two variables
to be discontinuous at a point where its first partial derivatives exist.

Existence alone of the partial derivatives at that point is not enough, but
continuity of the partial derivatives guarantees differentiability.
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Recall

The Chain Rule for functions of a single variable says that when

w = f (x) is a differentiable function of x , and

x = g(t) is a differentiable function of t,

then

w is a differentiable function of t, and

dw/dt can be calculated by the formula dw
dt = dw

dx
dx
dt .

For functions of two or more variables, the Chain Rule has several forms.
The form depends on how many variables are involved, but once this is
taken into account, it works like the Chain Rule for functions of a single
variable.
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Functions of Two Variables

The Chain Rule formula for a differentiable function w = f (x , y) when
x = x(t) and y = y(t) are both differentiable functions of t is given in the
following theorem.

Theorem 19 (Chain Rule for Functions of Two Independent
Variables).

If w = f (x , y) is differentiable and if x = x(t),y = y(t) are differentiable
functions of t, then the composite w = f (x(t), y(t)) is a differentiable
function of t and

dw

dt
= fx(x(t), y(t)) · x ′(t) + fy (x(t), y(t)) · y ′(t),

or

dw

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.
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Branch Diagram : Functions of Two Variables

Often we write ∂w/∂x for the
partial derivative ∂f /∂x , so
we can rewrite the Chain Rule
in the form

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
.
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Functions of Three Variables

We can now probably predict the Chain Rule for functions of three
variables, as it only involves adding the expected third term to the
two-variable formula.

Theorem 20 (Chain Rule for Functions of Three Independent
Variables).

If w = f (x , y , z) is differentiable and x , y , and z are differentiable
functions of t, then w is a differentiable function of t and

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
.
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Branch Diagram : Functions of Two Variables
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Functions Defined on Surfaces

If we are interested in the temperature w = f (x , y , z) at points (x , y , z) on
the earth’s surface, we might prefer to think of x , y , and z as functions of
the variables r and s that give the point’s longitudes and latitudes.

If x = g(r , s), y = h(r , s),
and z = k(r , s), we could then
express the temperature as a
function of r and s with the
composite function

w = f (g(r , s), h(r , s), k(r , s)).
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Functions Defined on Surfaces

Under the conditions stated below, w has partial derivatives with respect
to both r and s that can be calculated in the following way.

Theorem 21 (Chain Rule for Two Independent Variables and
Three Intermediate Variables).

Suppose that w = f (x , y , z), x = g(r , s), y = h(r , s), and z = k(r , s). If
all four functions are differentiable, then w has partial derivatives with
respect to r and s, given by the formulas

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
+
∂w

∂z

∂z

∂r
∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
.
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Branch Diagram for ∂w
∂r = ∂w

∂x
∂x
∂r + ∂w

∂y
∂y
∂r + ∂w

∂z
∂z
∂r
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Branch Diagram for ∂w
∂s = ∂w

∂x
∂x
∂s + ∂w

∂y
∂y
∂s + ∂w

∂z
∂z
∂s
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Branch Diagram for ∂w
∂r = ∂w

∂x
∂x
∂r + ∂w

∂y
∂y
∂r

If f is a function of two variables instead of
three, each equation in the above Theorem
becomes correspondingly one term shorter.
If w = f (x , y), x = g(r , s), and y = h(r , s),
then

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r

and

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
.
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Branch Diagram

If f is a function of x alone, our equations are
even simpler.

If w = f (x , y), x = g(r , s), and y = h(r , s),
then

∂w

∂r
=

dw

dx

∂x

∂r

and

∂w

∂s
=

dw

dx

∂x

∂s
.
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Functions Defined on Surfaces

Theorem 22 (A Formula for Implicit Differentiation).

Suppose that F (x , y) is differentiable and that the equation F (x , y) = 0
defines y as a differentiable function of x . Then at any point where
Fy 6= 0,

dy

dx
= −Fx

Fy
.
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Functions Defined on Surfaces

The result in Theorem 22 is easily extended to three variables.

Suppose that the equation F (x , y , z) = 0 defines the variable z implicitly
as a function z = f (x , y). Then for all all (x , y) in the domain of f , we
have

F (x , y , f (x , y)) = 0.

Assuming that F and f are differentiable functions, we can use the Chain
Rule to differentiate the equation F (x , y , z) = 0 with respect to the
independent variables x and y . Hence we get

∂z

∂x
= −Fx

Fy
and

∂z

∂y
= −Fy

Fz
. (1)
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Implicit Function Theorem

An important result from advanced calculus, called the Implicit Function
Theorem, states the conditions for which our results in Equations (1) are
valid.

If the partial derivatives Fx ,Fy , and Fz are continuous throughout an open
region R in space containing the point (x0, y0, z0), and if for some
constant c , F (x0, y0, z0) = c and Fz(x0, y0, z0) 6= 0, then the equation
F (x , y , z) = c defines z implicitly as a differentiable function of x and y
near (x0, y0, z0), and the partial derivatives of z are given by Equations (1).
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Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but
each one is just a special case of one general formula. When solving
particular problems, it may help to draw the appropriate branch diagram
by placing the dependent variable on top, the intermediate variables in the
middle, and the selected independent variable at the bottom.

To find the derivative of the dependent variable with respect to the
selected independent variable, start at the dependent variable and read
down each route of the branch diagram to the independent variable,
calculating and multiplying the derivatives along each route. Then add the
products found for the different routes.
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Functions of Many Variables

In general, suppose that w = f (x , y , . . . , v) is a differentiable function of
the variables x , y , . . . , v (a finite set) and the x , y , . . . , v are differentiable
functions of p, q, . . . , t (another finite set).

Then w is a differentiable function of the variables p through t, and the
partial derivatives of w with respect to these variables are given by
equations of the form

∂w

∂p
=
∂w

∂x

∂x

∂p
+
∂w

∂y

∂y

∂p
+ . . .+

∂w

∂v

∂v

∂p
.

The other equations are obtained by replacing p by q, · · · , t, one at a time.
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Functions of Many Variables

One way to remember this equation is to think of the right-hand side as
the dot product of two vectors with components

complex number︷ ︸︸ ︷
x︸︷︷︸

real

+ iy︸︷︷︸
imaginary(

∂w

∂x
,
∂w

∂y
, . . . ,

∂w

∂v

)
︸ ︷︷ ︸
Derivatives of w with

respect to the
intermediate variables

and

(
∂x

∂p
,
∂y

∂p
, . . . ,

∂v

∂p

)
︸ ︷︷ ︸

Derivatives of the
intermediate variables with
respect to the selected
independent variable

.
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Calculating First-Order Partial Derivatives

Exercise 23.

Find ∂f /∂x and ∂f /∂y .

1. f (x , y) = tan−1(y/x)

2. f (x , y) = (x3 + (y/2))2/3

3. f (x , y) = (x + y)/(xy − 1)

4. f (x , y) = e−x sin(x + y)

5. f (x , y) = sin2(x − 3y)

6. f (x , y) =

∫ y

x
g(t)dt (g continuous for all t)

7. f (x , y) =
∞∑
n=0

(xy)n (|xy | < 1)
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Solution for (1),(2),(3) and (4) in Exercise 23

1. ∂f
∂x = 1

1+( y
x )

2 · ∂∂x ( yx ) = − y
x2[1+( y

x
)2]

= − y
x2+y2 ,

∂f
∂y = 1

1+( y
x )

2 · ∂∂y ( yx ) = 1
x[1+( y

x
)2]

= x
x2+y2

2. ∂f
∂x = 2x2

3
√

x3+( y
2 )

, ∂f
∂y = 1

3 3
√

x3+( y
2 )

3. ∂f
∂x = (xy−1)(1)−(x+y)(y)

(xy−1)2 = −y2−1
(xy−1)2 , ∂f

∂y = (xy−1)(1)−(x+y)(x)
(xy−1)2 = −x2−1

(xy−1)2

4. ∂f
∂x = −e−x sin(x + y) + e−x cos(x + y), ∂f

∂y = e−x cos(x + y)
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Solution for (5),(6) and (7) in Exercise 23

5. ∂f
∂x = 2 sin(x − 3y) · ∂∂x sin(x − 3y) =

2 sin(x − 3y) cos(x − 3y) · ∂∂x (x − 3y) = 2 sin(x − 3y) cos(x − 3y),
∂f
∂y = 2 sin(x − 3y) · ∂∂y sin(x − 3y) =

2 sin(x − 3y) cos(x − 3y) · ∂∂y (x − 3y) = −6 sin(x − 3y) cos(x − 3y)

6. ∂f
∂x = −g(x), ∂f

∂y = g(y)

7. f (x , y) =
∞∑
n=0

(xy)n,

|xy | < 1⇒ f (x , y) = 1
1−xy ⇒

∂f
∂x = − 1

(1−xy)2 · ∂∂x (1− xy) = y
(1−xy)2

and ∂f
∂y = − 1

(1−xy)2 · ∂∂y (1− xy) = x
(1−xy)2
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Exercises

Exercise 24.

Find fx , fy and fz .

1. f (x , y , z) = 1 + xy2 − 2z2

2. f (x , y , z) = (x2 + y2 + z2)−1/2

3. f (x , y , z) = sin−1(xyz)

4. f (x , y , z) = ln(x + 2y + 3z)

5. f (x , y , z) = tanh(x + 2y + 3z)

6. f (x , y , z) = sinh(xy − z2)
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Solution for Exercise 24

1. fx = y2, fy = 2xy , fz = −4z

2. fx = −x(x2 + y2 + z2)−3/2, fy = −y(x2 + y2 + z2)−3/2,
fz = −z(x2 + y2 + z2)−3/2

3. fx = yz√
1−x2y2z2

, fy = xz√
1−x2y2z2

, fz = xy√
1−x2y2z2

4. fx = 1
x+2y+3z , fy = 2

x+2y+3z , fz = 3
x+2y+3z

5. fx = sech2(x + 2y + 3z), fy = 2 sech2(x + 2y + 3z),
fz = 3 sech2(x + 2y + 3z)

6. fx = y cosh(xy − z2), fy = x cosh(xy − z2), fz = −2z cosh(xy − z2)
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Exercises

Exercise 25.

Find the partial derivative of the function with respect to each variable.

1. f (t, α) = cos(2πt − α)

2. g(r , θ, z) = r(1− cos θ)− z

3. Work done by the heart

W (P,V , δ, v , g) = PV +
V δv2

2g

4. Wilson lot size formula

A(c , h, k ,m, q) =
km

q
+ cm +

hq

2
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Solution for Exercise 25

1. ∂f
∂t = −2π sin(2πt − α), ∂f

∂α = sin(2πt − α)

2. ∂g
∂r = 1− cos θ, ∂g

∂θ = r sin θ, ∂g
∂z = −1

3. Wp = V , Wv = P + δv2

2g , Wδ = Vv2

2g , Wv = 2V δv
2g = V∂v

g ,

Wg = −V δv2

2g2

4. ∂A
∂c = m, ∂A

∂h = q
2 , ∂A

∂k = m
q , ∂A

∂m = k
q + c , ∂A

∂q = −km
q2 + h

2
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Exercises

Exercise 26.

Find all the second-order partial derivatives of the functions.

1. f (x , y) = x + y + xy

2. h(x , y) = xey + y + 1

3. w = x2 tan(xy)

4. w = x−y
x2+y
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Solution for (1), (2) and (3) in Exercise 26

1. ∂f
∂x = 1 + y , ∂f

∂y = 1 + x , ∂2f
∂x2 = 0, ∂2f

∂y2 = 0, ∂2f
∂y∂x = ∂2f

∂x∂y = 1

2. ∂h
∂x = ey , ∂h

∂y = xey + 1, ∂2h
∂x2 = 0, ∂2h

∂y2 = xey , ∂2h
∂y∂x = ∂2h

∂x∂y = ey

3. ∂w
∂x

= 2x tan(xy) + x2 sec2(xy) · y = 2x tan(xy) + x2y sec2(xy),
∂w
∂y

= x2 sec2(xy) · x = x3 sec2(xy),

∂2w
∂x2 = 2 tan(xy) + 2x sec2(xy) · y + 2xy sec2(xy) + x2y(2 sec(xy) sec(xy) tan(xy) · y) =

2 tan(xy) + 4xy sec2(xy) + 2x2y2 sec2(xy) tan(xy),
∂2w
∂y2 = x3(2 sec(xy) sec(xy) tan(xy) · x) = 2x4 sec2(xy) tan(xy)

∂2w
∂y∂x

= ∂2w
∂x∂y

= 3x2 sec2(xy) + x3(2 sec(xy) sec(xy) tan(xy) · y) =

3x2 sec2(xy) + x3y sec2(xy) tan(xy).
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Solution for (4) in Exercise 26

4. ∂w
∂x = (x2+y)−(x−y)(2x)

(x2+y)2 = −x2+2xy+y
(x2+y)2 ,

∂w
∂y = (x2+y)(−1)−(x−y)

(x2+y)2 = −x2−x
(x2+y)2 ,

∂2w
∂x2 = (x2+y)2(−2x+2y)−(−x2+2xy+y)2(x2+y)(2x)

[(x2+y)2]2 = 2(x3−3x2y−3xy+y2)
(x2+y)3 ,

∂2w
∂y2 = (x2+y)2·0−(−x2−x)2(x2+y)·1

[(x2+y)2]2 = 2x2+2x
(x2+y)3 ,

∂2w
∂y∂x = ∂2w

∂x∂y = (x2+y)2(2x+1)−(−x2+2xy+y)2(x2+y)·1
[(x2+y)2]2 = 2x3+3x2−2xy−y

(x2+y)3
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Mixed Partial Derivatives

Exercise 27.

1. Verify that wxy = wyx .

(a) w = ex + x ln y + y ln x
(b) w = x sin y + y sin x + xy

2. Which order of differentiation will calculate fxy faster: x first or y
first? try to answer without writing anything down.

(a) f (x , y) = x sin y + ey

(b) f (x , y) = y + x2y + 4y3 − ln(y2 + 1)
(c) f (x , y) = x ln xy
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Solution for Exercise 27

1. (a) ∂w
∂x = ex + ln y + y

x , ∂w
∂y = x

y + ln x , ∂2w
∂y∂x = 1

y + 1
x , and ∂2w

∂x∂y = 1
y + 1

x

(b) ∂w
∂x = sin y + y cos x + y , ∂w

∂y = x cos y + sin x + x ,
∂2w
∂y∂x = cos y + cos x + 1, and ∂2w

∂x∂y = cos y + cos x + 1

2. (a) x first
(b) x first
(c) y first
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Exercises

Exercise 28.

The fifth-order partial derivative ∂5f /∂x2∂y3 is zero for each of the
following functions. To show this as quickly as possible, which variable
would you differentiate with respect to first: x or y? Try to answer
without writing anything down.

1. f (x , y) = y2 + y(sin x − x4)

2. f (x , y) = xey
2/2
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Solution for Exercise 28

1. y first three times

2. x first twice
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Using the Partial Derivative Definition

Exercise 29.

Use the limit definition of partial derivative to compute the partial
derivatives of the functions at the specified points.

1. f (x , y) = 1− x + y − 3x2y , ∂f
∂x and ∂f

∂y at (1, 2)

2. f (x , y) =
√

2x + 3y − 1, ∂f
∂x and ∂f

∂y at (−2, 3)
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Solution for Exercise 29

1. fx(1, 2) = lim
h→0

f (1+h,2)−f (1,2)
h = lim

h→0

[1−(1+h)+2−6(1+h)2]−(2−6)

h =

lim
h→0

−h−6(1+2h+h2)+6
h lim

h→0

−13h−6h2

h = lim
h→0

(−13− 6h) = −13,

fy (1, 2) = lim
h→0

f (1,2+h)−f (1,2)
h = lim

h→0

[1−1+(2+h)−3(2+h)]−(2−6)
h =

lim
h→0

(2−6−2h)−(2−6)
h = lim

h→0
(−2) = −2

2. fx(−2, 3) = lim
h→0

f (−2+h,3)−f (−2,3)
h = lim

h→0

√
2(−2+h)+9−1−

√
−4+9−1

h

= lim
h→0

√
2h+4−2

h = lim
h→0

(√
2h+4−2

h

√
2h+4+2√
2h+4+2

)
= lim

h→0

2√
2h+4+2

= 1
2 ,

fy (−2, 3) = lim
h→0

f (−2,3+h)−f (−2,3)
h =

= lim
h→0

√
−4+3(3+h)−1−

√
−4+9−1

h = lim
h→0

√
3h+4−2

h =

lim
h→0

(√
3h+4−2

h

√
3h+4+2√
3h+4+2

)
= lim

h→0

3√
2h+4+2

= 3
4
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Exercises

Exercise 30.

1. Let f (x , y) = 2x + 3y − 4. Find the slope of the line tangent to this
surface at the point (2,−1) and lying in the a. plane x = 2 b. plane
y = −1.

2. Let f (x , y) = x2 + y3. Find the slope of the line tangent to this
surface at the point (−1, 1) and lying in the a. plane x = −1 b.
plane y = 1.

3. Three variables : Let w = f (x , y , z) be a function of three
independent variables and write the formal definition of the partial
derivative ∂f /∂z at (x0, y0, z0). Use this definition to find ∂f /∂z at
(1, 2, 3) for f (x , y , z) = x2yz2.

4. Three variables : Let w = f (x , y , z) be a function of three
independent variables and write the formal definition of the partial
derivative ∂f /∂y at (x0, y0, z0). Use this definition to find ∂f /∂y at
(−1, 0, 3) for f (x , y , z) = −2xy2 + yz2.
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Solution for Exercise 30

1. (a) In the plane x = 2⇒ fy (x , y) = 3⇒ fy (2,−1) = 3⇒ m = 3
(b) In the plane y = −1⇒ fx(x , y) = 2⇒ fy (2,−1) = 2⇒ m = 2

2. (a) In the plane
x = −1⇒ fy (x , y) = 3y2 ⇒ fy (−1, 1) = 3(1)2 = 3⇒ m = 3

(b) In the plane
y = 1⇒ fx(x , y) = 2x ⇒ fy (−1, 1) = 2(−1) = −2⇒ m = −2

3. fz(x0, y0, z0) = lim
h→0

f (x0,y0,z0+h)−f (x0,y0,z0)
h ;

fz(1, 2, 3) = lim
h→0

f (1,2,3+h)−f (1,2,3)
h = lim

h→0

2(3+h)2−2(9)
h =

lim
h→0

12h+2h2

h = lim
h→0

(12 + 2h) = 12

4. fy (x0, y0, z0) = lim
h→0

f (x0,y0+h,z0)−f (x0,y0,z0)
h ;

fy (−1, 0, 3) = lim
h→0

f (−1,h,3)−f (−1,0,3)
h = lim

h→0

(2h2+5h)−0
h =

lim
h→0

(2h + 9) = 9
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Differentiating Implicitly

Exercise 31.

1. Find the value of ∂z/∂x at the point (1, 1, 1) if the equation

xy + z3x − 2yz = 0

defines z as a function of the two independent variables x and y and
the partial derivative exists.

2. Find the value of ∂x/∂z at the point (1,−1,−3) if the equation

xz + y ln x − x2 + 4 = 0

defines x as a function of the two independent variables y and z and
the partial derivative exists.
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Solution for Exercise 31

1. y +
(
3z2 ∂z

∂x

)
x + z3 − 2y ∂z∂x = 0⇒ (3xz2 − 2y)∂z∂x = −y − z3 ⇒ at

(1, 1, 1) we have (3− 2)∂z∂x = −1− 1 or ∂z
∂x = −2

2.
(
∂x
∂z

)
z + x +

( y
x

)
∂x
∂z − 2x ∂x∂z = 0⇒ (z + y

x − 2x)∂x∂z = −x ⇒ at

(1,−1,−3) we have (−3− 1− 2)∂x∂z = −1 or ∂x
∂z = 1

6
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Exercises

Exercise 32.

The following exercises are about the triangle shown here.

1. Express A implicitly as a function of a, b, and c and calculate ∂A/∂a
and ∂A/∂b.

2. Express a implicitly as a function of A, b, and B and calculate ∂a/∂A
and ∂a/∂B.
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Solution for Exercise 32

1. a2 = b2 + c2 − 2bc cosA⇒ 2a = (2bc sinA)∂A∂a ⇒
∂A
∂a = a

bc sinA ; also

0 = 2b − 2c cosA + (2bc sinA)∂A∂b ⇒ 2c cosA− 2b =

(2bc sinA)∂A∂b ⇒
∂A
∂b ⇒= c cosA−b

bc sinA

2. a
sinA = b

sinB ⇒
(sinA) ∂a

∂A
−a cosA

sinA = 0⇒ (sinA) ∂a∂x − a cosA = 0⇒
∂a
∂A = a cosA

sinA ; also(
1

sinA

)
∂a
∂B = b(− cscB cotB)⇒ ∂a

∂B = −b cscB cotB sinA
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Exercises

Exercise 33.

1. Express vx in terms of u and y if the equations x = v ln u and
y = u ln v define u and v as functions of the independent variables x
and y , and if vx exists.
(Hint : Differentiate both equations with respect to x and solve for vx
by eliminating ux .)

2. Two dependent variables: Find ∂x/∂u and ∂y/∂u if the equations
u = x2 − y2 and v = x2 − y define x and y as functions of the
independent variables u and v , and the partial derivatives exist. Then
let s = x2 + y2 and find ∂s/∂u.
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Solution for Exercise 33

1. Differentiating each equation implicitly gives 1 = vx ln u +
(
v
u

)
ux and 0 = ux ln v +

(
u
v

)
vx

or

(ln u)vx +
( v
u

)
ux = 1(u

v

)
vx + (ln v)ux = 0

⇒ vx =

∣∣∣∣∣1
v
u

0 ln v

∣∣∣∣∣∣∣∣∣∣ln u v
u

u
v

ln v

∣∣∣∣∣
= ln v

(ln u)(ln v)−1

2. Differentiating each equation implicitly gives 1 = (2x)xu − (2y)yu and 0 = (2x)xu − yu or

(2x)xu − (2y)yu = 1

(2x)xu − yu = 0

}
⇒ xu =

∣∣∣∣∣1 −2y
0 −1

∣∣∣∣∣∣∣∣∣∣2x −2y
2x −1

∣∣∣∣∣
= −1

(−2x+4xy)
= 1

2x−4xy
and

yu =

∣∣∣∣∣2x 1
2x 0

∣∣∣∣∣
−2x+4xy

= −2x
−2x+4xy

= 2x
2x−4xy

= 1
1−2y

; next s = x2 + y2 ⇒ ∂s
∂u

= 2x ∂x
∂u

+ 2y ∂y
∂u

2x
(

1
2x−4xy

)
+ 2y

(
1

1−2y

)
= 1

1−2y
+ 2y

1−2y
= 1+2y

1−2y
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Exercises

Exercise 34.

1. Let f (x , y) =

{
y3, y ≥ 0

−y2, y < 0.
Find fx , fy , fxy , and fyx , and state the domain for each partial
derivative.

2. Let f (x , y) =

{√
x , x ≥ 0

x2, x < 0.
Find fx , fy , fxy , and fyx , and state the domain for each partial
derivative.

P. Sam Johnson Partial Derivatives 81/122



Solution for Exercise 34

1. fx (x , y) =

{
0 if y ≥ 0

0 if y < 0
⇒ fx (x , y) = 0 for all points (x , y); at y = 0,

fy (x , 0) = lim
h→0

f (x,0+h)−f (x,0)
h

= lim
h→0

f (x,h)−0
h

= lim
h→0

f (x,h)
h

= 0 because

lim
h→0−

f (x,h)
h

= lim
h→0−

h3

h
= 0 and

lim
h→0+

f (x,h)
h

= lim
h→0+

h2

h
= 0⇒ fy (x , y) =

{
3y2 ify ≥ 0

−2y ify < 0
; fyx (x , y) = fxy (x , y) = 0 for all

points (x , y).

2. At x = 0, fx (0, y) = lim
h→0

f (0+h,y)−f (0,y)
h

= lim
h→0

f (h,y)−0
h

= lim
h→0

f (h,y)
h

which does not exist

because lim
h→0−

f (h,y)
h

= lim
h→0−

h2

h
= 0 and

lim
h→0+

f (h,y)
h

= lim
h→0+

√
h
h

= lim
h→0+

1√
h

= +∞⇒ fx (x , y) =

{
1

2
√

x
ifx > 0

2x ifx < 0
;

fy (x , y) =

{
0 ifx ≥ 0

0 ifx < 0
⇒ fy (x , y) = 0 for all points (x , y); fyx (x , y) = 0 for all points

(x , y), while fxy (x , y) = 0 for all points (x , y) such that x 6= 0.
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Exercises

Exercise 35.

Show that each function satisfies a Laplace equation.

1. f (x , y , z) = 2z3 − 3(x2 + y2)z

2. f (x , y) = tan−1 x
y

3. f (x , y , z) = e3x+4y cos 5z
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Solution for Exercise 35

1. ∂f
∂x = −6xz , ∂f

∂y = −6yz , ∂f
∂z = 6z2 − 3(x2 + y2), ∂2f

∂x2 = −6z ,
∂2f
∂y2 = −6z , ∂2f

∂z2 = 12z ⇒ ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 = −6z − 6z + 12z = 0

2. ∂f
∂x = 1/y

1+
(

x
y

)2 = y
y2+x2 , ∂f

∂y = −x/y2

1+
(

x
y

)2 = −x
y2+x2 ,

∂2f
∂x2 = (y2+x2)·0−y ·2x

(y2+x2)2 = −2xy
(y2+x2)2 , ∂2f

∂y2 = (y2+x2)·0−(−x)·2y
(y2+x2)2 = 2xy

(y2+x2)2 ⇒
∂2f
∂x2 + ∂2f

∂y2 = −2xy
(y2+x2)2 + 2xy

(y2+x2)2 = 0

3. ∂f
∂x = 3e3x+4y cos 5z , ∂f

∂y = 4e3x+4y cos 5z , ∂f
∂z = −5e3x+4y sin 5z ;

∂2f
∂x2 = 9e3x+4y cos 5z , ∂2f

∂y2 = 16e3x+4y cos 5z ,
∂2f
∂z2 = −25e3x+4y cos 5z ⇒ ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2 =

9e3x+4y cos 5z + 16e3x+4y cos 5z − 25e3x+4y cos 5z = 0
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Exercises

Exercise 36.

Show that the functions are all solutions of the wave equation

∂2w

∂t2
= c2∂

2w

∂x2
,

where w is the wave height, x is the distance variable, t is the time
variable, and c is the velocity with which the waves are propagated.

1. w = cos(2x + 2ct)

2. w = ln(2x + 2ct)

3. w = f (u), where f is a differentiable function of u, and u = a(x + ct), where a is a
constant.

4. Does a function f (x , y) with continuous first partial derivatives throughout an open region
R have to be continuous on R? Give reasons for your answer.

5. If a function f (x , y) has continuous second partial derivatives throughout an open region
R, must the first-order partial derivatives of f be continuous on R? Give reasons for your
answer.
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Solution for (1), (2) and (3) in Exercise 36

1. ∂w
∂x = −2 sin(2x + 2ct), ∂w

∂t = −2c sin(2x + 2ct);
∂2w
∂x2 = −4 cos(2x + 2ct),
∂2w
∂t2 = −4c2 cos(2x + 2ct)⇒ ∂2w

∂t2 = c2[−4 cos(2x + 2ct)] = c2 ∂2w
∂x2

2. ∂w
∂x = 1

x+ct , ∂w
∂t = c

x+ct ; ∂2w
∂x2 = −1

(x+ct)2 ,

∂2w
∂t2 = −c2

(x+ct)2 ⇒ ∂2w
∂t2 = c2

[
−1

(x+ct)2

]
= c2 ∂2w

∂x2

3. ∂w
∂t = ∂f

∂u
∂u
∂t = ∂f

∂u (ac)⇒ ∂2w
∂t2 = (ac) ∂

2f
∂u2 (ac) = a2c2 ∂2f

∂u2 ;
∂w
∂x = ∂f

∂u
∂u
∂x = ∂f

∂u · a⇒
∂2w
∂x2 =

(
a ∂

2f
∂u2

)
· a = a2 ∂2f

∂u2 ⇒ ∂2w
∂t2 =

a2c2 ∂2f
∂u2 = c2

(
a2 ∂2f

∂u2

)
= c2 ∂2w

∂x2

P. Sam Johnson Partial Derivatives 86/122



Solution for (4) and (5) in Exercise 36

1. If the first partial derivatives are continuous throughout an open
region R, then by Theorem 3 in this section of the text,
f (x , y) = f (x0, y0) + fx(x0, y0)∆x + fy (x0, y0)∆y + ε1∆x + ε2∆y ,
where ε1, ε2 → 0 as ∆x ,∆y → 0. Then as (x , y)→ (x0, y0), ∆x → 0
and ∆y → 0⇒ lim

(x ,y)→(x0,y0)
f (x , y) = f (x0, y0)⇒ f is continuous at

every point (x0, y0) in R.

2. Yes, since fxx , fyy , fxy , and fyx are all continuous on R, use the same
reasoning as in Exercise 76 with
fx(x , y) = fx(x0, y0) + fxx(x0, y0)∆x + fxy (x0, y0)∆y + ε1∆x + ε2∆y
and
fy (x , y) = fy (x0, y0) + fyx(x0, y0)∆x + fyy (x0, y0)∆y + ε1∆x + ε2∆y .
Then lim

(x ,y)→(x0,y0)
fx(x , y) = fx(x0, y0) and

lim
(x ,y)→(x0,y0)

fy (x , y) = fy (x0, y0).
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The heat equation

Exercise 37.

An important partial differential equation that describes the distribution of
heat in a region at time t can be represented by the one-dimensional heat
equation

∂f

∂t
=
∂2f

∂x2
.

Show that u(x , t) = sin(αx) · e−βt satisfies the heat equation for
constants α and β.
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Solution for Exercise 37

To find α and β so that ut = uxx ⇒ ut = −β sin(αx)e−βt and
ux = α cos(αx)e−βt ⇒ uxx = −α2 sin(αx)e−βt ; then
ut = uxx ⇒ −β sin(αx)e−βt = −a2 sin(ax)e−βt , thus ut = uxx only if
β = α2
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Exercises

Exercise 38.

1. Let f (x , y) =

{
xy2

x2+y4 , (x , y) 6= (0, 0)

0, (x , y) = (0, 0).

Show that fx(0, 0) and fy (0, 0) exist, but f is not differentiable at
(0, 0).
(Hint:Show that f is not continuous at (0, 0).)

2. Let f (x , y) =

{
0, x2 < y < 2x2

1, otherwise.

Show that fx(0, 0) and fy (0, 0) exist, but f is not differentiable at
(0, 0).
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Solution for Exercise 38

1. fx (0, 0) = lim
h→0

f (0+h,0)−f (0,0)
h

= lim
h→0

h02

h2+04−0

h
= lim

h→0

0
h

= 0;

fy (0, 0) = lim
h→0

f (0,0+h)−f (0,0)
h

= lim
h→0

=
0h2

02+h4−0

h
= lim

h→0

0
h

= 0;

lim
(x,y)→(0,0)

alongx=ky2

f (x , y) = lim
y→0

(ky2)y2

(ky2)2+y4 = lim
y→0

ky4

k2y4+y4 = lim
y→0

k
k2+1

= k
k2+1

⇒ different limits

for different values of k ⇒ lim
(x,y)→(0,0)

f (x , y) does not exist ⇒ f (x , y) is not continuous at

(0, 0)⇒ by Theorem 18 (Differentiability Implies Continuity), f (x , y) is not differentiable
at (0, 0).

2. fx (0, 0) = lim
h→0

f (0+h,0)−f (0,0)
h

= lim
h→0

f (h,0)−1
h

= lim
h→0

1−1
h

= 0;

fy (0, 0) = lim
h→0

f (0,0+h)−f (0,0)
h

= lim
h→0

f (0,h)−1
h

= lim
h→0

1−1
h

= 0;

lim
(x,y)→(0,0)

alongy=x2

f (x , y) = lim
y→0

0 = 0 but lim
(x,y)→(0,0)

alongy=1.5x2

f (x , y) = lim
y→0

1 = 1⇒ lim
(x,y)→(0,0)

f (x , y)

does not exist ⇒ f (x , y) is not continuous at (0, 0)⇒ by Theorem 18 (Differentiability
Implies Continuity), f (x , y) is not differentiable at (0, 0).
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Extra Notes on Differentiability

An informal definition of differentiability of a function f (x , y) at a point
(a, b) is that the function f (x , y) is well-approximated by a linear function
L(x , y) near (a, b). The function L(x , y) is called the local linearization
of f (x , y) near (a, b). We now focus on the precise meaning of the phrase
“well-approximated.”

By looking at examples, we shall see that local linearity requires the
existence of partial derivatives, but they do not tell the whole story.

In particular, existence of partial derivatives at a point is not sufficient to
guarantee local linearity at that point.
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Extra Notes on Differentiability

As an illustration, take a sheet of paper, crumple it into a ball and smooth
it out again. Wherever there is a crease it would be difficult to approximate
the surface by a plane — these are points of nondifferentiability of the
function giving the height of the paper above the floor. Yet the sheet of
paper models a graph which is continuous — there are no breaks.

As in the case of one-variable calculus, continuity does not imply
differentiability. But differentiability does require continuity: there cannot
be linear approximations to a surface at points where there are abrupt
changes in height.
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Extra Notes on Differentiability

For a function of two variables, as for a function of one variable, we define
differentiability at a point in terms of the error in a linear
approximation as we move from the point to a nearby point.

If the point is (a, b) and a nearby point is (a + h, b + k), the distance
between them is

√
h2 + k2.
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Extra Notes on Differentiability

Definition 39.

A function f (x , y) is differentiable at the point (a, b) if there is a linear
function L(x , y) = f (a, b) + m(x − a) + n(y − b) such that if the error
E (x , y) is defined by

f (x , y) = L(x , y) + E (x , y),

and if h = x − a, k = y − b, then the relative error E(a+h,b+k)√
h2+k2

satisfies

lim
(h,k)→(0,0)

E (a + h, b + k)√
h2 + k2

= 0.

The function f is differentiable if it is differentiable at each point of its
domain. The function L(x , y) is called the local linearization of f (x , y)
near (a, b).
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Extra Notes on Differentiability

A function f (x , y) is differentiable at the point (a, b) if there is a linear
function L(x , y) = f (a, b) + m(x − a) + n(y − b) such that if the error
E (x , y) is defined by f (x , y) = L(x , y) + E (x , y), and if

h = x − a, k = y − b, then the relative error E(a+h,b+k)√
h2+k2

satisfies

lim
(h,k)→(0,0)

E (a + h, b + k)√
h2 + k2

= 0.
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Extra Notes on Differentiability

In the next example, we show that this definition of differentiability is
consistent with our previous notion — that is, that m = fx and n = fy and
that the graph of L(x , y) is the tangent plane.

Theorem 40.

Show that if f is a differentiable function with local linearization

L(x , y) = f (a, b) + m(x − a) + n(y − b),

then m = fx(a, b) and n = fy (a, b).

Proof : Since f is differentiable, we know that the relative error in L(x , y)
tends to 0 as we get close to (a, b).

P. Sam Johnson Partial Derivatives 97/122



Solution (contd...)

Suppose h > 0 and k = 0. Then we know that

0 = lim
h→0

E (a + h, b)√
h2 + k2

= lim
h→0

E (a + h, b)

h

= lim
h→0

f (a + h, b)− L(a + h, b)

h

= lim
h→0

f (a + h, b)− f (a, b)−mh

h

= lim
h→0

( f (a + h, b)− f (a, b)

h

)
−m

= fx(a, b)−m.

A similar result holds if h < 0, so we have m = fx(a, b). The result
n = fy (a, b) is found in a similar manner.
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Extra Notes on Differentiability

The previous result says that if a function is differentiable at a point, it
has partial derivatives there.

Therefore, if any of the partial derivatives fail to exist, then the function
cannot be differentiable.

This is what happens in the following example of a cone.

Example 41.

Consider the function
f (x , y) =

√
x2 + y2.

Is f differentiable at the origin?

P. Sam Johnson Partial Derivatives 99/122



Extra Notes on Differentiability

The function f (x , y) =
√

x2 + y2 is not locally linear at (0, 0).

Zooming in around (0, 0) does not make the graph look like a plane.

If we zoom in on the graph of the function f (x , y) =
√
x2 + y2 at the

origin, as shown in the figure, the sharp point remains; the graph never
flattens out to look like a plane. Near its vertex, the graph does not look
like it is well approximated (in any reasonable sense) by any plane.
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Solution

Judging from the graph of f , we would not expect f to be differentiable at
(0, 0). Let us check this by trying to compute the partial derivatives of f
at (0, 0):

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

√
h2 + 0− 0

h
= lim

h→0

|h|
h
.

Since |h|/h = ±1, depending on whether h approaches 0 from the left or
right, this limit does not exist and so neither does the partial derivative
fx(0, 0).

Thus, f cannot be differentiable at the origin. If it were, both of the
partial derivatives, fx(0, 0) and fy (0, 0), would exist.
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Alternate Solution

Alternatively, we could show directly that there is no linear approximation
near (0, 0) that satisfies the small relative error criterion for differentiability.

Any plane passing through the point (0, 0, 0) has the form

L(x , y) = mx + ny

for some constants m and n.

If E (x , y) = f (x , y)− L(x , y), then

E (x , y) =
√

x2 + y2 −mx − ny .

Then for f to be differentiable at the origin, we would need to show that

lim
(h,k)→(0,0)

√
h2 + k2 −mh − nk√

h2 + k2
= 0.

P. Sam Johnson Partial Derivatives 102/122



Alternate Solution (contd...)

Taking k = 0 gives

lim
h→0

|h| −mh

|h|
= 1−m lim

h→0

h

|h|
.

This limit exists only if m = 0 for the same reason as before. But then the
value of the limit is 1 and not 0 as required. Thus, we again conclude f is
not differentiable.

In the above example the partial derivatives fx and fy did not exist at the
origin and this was sufficient to establish nondifferentiability there. We
might expect that if both partial derivatives do exist, then f is
differentiable. But the next example shows that this not necessarily true:
the existence of both partial derivatives at a point is not sufficient to
guarantee differentiability.
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Example

Example 42.

Consider the function
f (x , y) = x1/3y1/3.

Show that the partial derivatives fx(0, 0) and fy (0, 0) exist, but that f is
not differentiable at (0, 0).
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Solution

We have f (0, 0) = 0 and we compute the partial derivatives using the
definition:

lim
h→0

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0
0− 0 = 0,

and similarly
fy (0, 0) = 0.

So, if there did exist a linear approximation near the origin, it would have
to be L(x , y) = 0. But we can show that this choice of L(x , y) does not
result in the small relative error that is required for differentiability.

In fact, since E (x , y) = f (x , y)− L(x , y) = f (x , y), we need to look at the
limit

lim
(h,k)→(0,0)

h1/3 k1/3

√
h2 + k2

.
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Solution (contd...)

If this limit exists, we get the same value no matter how h and k approach
0. Suppose we take k = h > 0. Then the limit becomes

lim
h→0

h1/3h1/3

√
h2 + k2

= lim
h→0

h2/3

h
√

2
= lim

h→0

1

h1/3
√

2
.

But this limit does not exist, since small values for h will make the fraction
arbitrarily large. So the only possible candidate for a linear approximation
at the origin does not have a sufficiently small relative error.

Thus, this function is not differentiable at the origin, even though the
partial derivatives fx(0, 0) and fy (0, 0) exist. The figure confirms that near
the origin the graph of z = f (x , y) is not well approximated by any plane.

In the above example, the function f was continuous at the point
where it was not differentiable.
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Summary

If a function is differentiable at a point, then both partial derivatives
exist there.

Having both partial derivatives at a point does not guarantee that a
function is differentiable there.
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Continuity and Differentiability

We know that differentiable functions of one variable are continuous.
Similarly, it can be shown that if a function of two variables is
differentiable at a point, then the function is continuous there. The
following example shows that even if the partial derivatives of a function
exist at a point, the function is not necessarily continuous at that point if
it is not differentiable there.

Example 43.

Suppose that f is the function of two variables defined by

f (x , y) =

{
xy

x2+y2 , (x , y) 6= (0, 0)

0, (x , y) = (0, 0).

One can show that f (x , y) is not continuous at the origin. Show that the
partial derivatives fx(0, 0) and fy (0, 0) exist. Could f be differentiable at
(0, 0)?
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Solution

From the definition of the partial derivative we see that

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

(1

h
.

0

h2 + 02

)
= lim

h→0

0

h
= 0,

and similarly fy (0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy (0, 0) exist.

However, f cannot be differentiable at the origin since it is not continuous
there.
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Summary

If a function is differentiable at a point, then it is continuous there.

Having both partial derivatives at a point does not guarantee that a
function is continuous there.
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How Do We Know If a Function Is Differentiable?

Question : Can we use partial derivatives to tell us if a function is
differentiable?

As we have seen from the last two examples, it is not enough that the
partial derivatives exist.

However, the following condition does guarantee differentiability:

Theorem 44 (Condition for Differentiability).

If the partial derivatives, fx and fy , of a function f exist and are
continuous on a small disk centered at the point (a, b), then f is
differentiable at (a, b).
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Condition for Differentiability

We will not prove this fact, although it provides a criterion for
differentiability which is often simpler to use than the definition.

It turns out that the requirement of continuous partial derivatives is more
stringent than that of differentiability, so there exist differentiable
functions which do not have continuous partial derivatives.

However, most functions we encounter will have continuous partial
derivatives.

The class of functions with continuous partial derivatives is given the name
C 1.
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Example

Example 45.

Show that the function f (x , y) = ln(x2 + y2) is differentiable everywhere
in its domain.

Solution : The domain of f is all of 2-space except for the origin. We
shall show that f has continuous partial derivatives everywhere in its
domain (that is, the function f is in C 1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial
derivatives are continuous everywhere except the origin (where the
denominators are zero). Thus, f is differentiable everywhere in its domain.
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The three-dimensional Laplace equation

Exercise 46.

The three-dimensional Laplace equation ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 = 0 is satisfied

by steady-state temperature distributions T = f (x , y , z) in space, by
gravitational potentials, and by electrostatic potentials. The
two-dimensional Laplace equation ∂2f

∂x2 + ∂2f
∂y2 = 0, obtained by dropping

the ∂2f /∂z2 term from the previous equation, describes potentials and
steady-state temperature distributions in a plane (see the accompanying
figure). The plane (a) may be treated as a thin slice of the solid (b)
perpendicular to the z-axis.
(a). ∂2f

∂x2 + ∂2f
∂y2 = 0

(b). ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 = 0
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The Wave Equation

Exercise 47.

If we stand on an ocean shore and take a snapshot of the waves, the
picture shows a regular pattern of peaks and valleys in an instant of time.
We see periodic vertical motion in space, with respect to distance. If we
stand in the water, we can feel the rise and fall of the water as the waves
go by. We see periodic vertical motion in time. In physics, this beautiful
symmetry is expressed by the one-dimensional wave equation

∂2w

∂t2
= c2∂

2w

∂x2
,

where w is the wave height, x is the distance variable, t is the time
variable, and c is the velocity with which the waves are propagated.
In our example, x is the distance across the ocean’s surface, but in other
applications, x might be the distance along a vibrating string, distance
through air (sound waves), or distance through space (light waves). The
number c varies with the medium and type of wave.
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Summary

Most functions built up from elementary functions have continuous partial
derivatives, except perhaps at a few obvious points.

Thus, in practice, we can often identify functions as being C 1 without
explicitly computing the partial derivatives.
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Old Questions

Question 48.

Given f (x , y) =

{
x2y sin 1

y y 6= 0

0 y = 0
. Then

(A) f is differentiable at (0, 0).

(B) f is not differentiable at (0, 0).

(C) fx(a, 0) exists, but fy (a, 0) does not exist, where a 6= 0.

(D) Both fx(a, 0) and fy (a, 0) exist, where a 6= 0.

(E) None of the other options.

The correct answers are
f is differentiable at (0, 0) ; fx(a, 0) exists, but fy (a, 0) does not exist,
where a 6= 0.
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Old Questions

Question 49.

Given f (x , y) =

{
xy2 sin 1

x x 6= 0

0 x = 0
. Then

(A) f is differentiable at (0, 0).

(B) f is not differentiable at (0, 0).

(C) fx(0, b) does not exist, but fy (0, b) exist, where b 6= 0.

(D) Both fx(0, b) and fy (0, b) do not exist, where b 6= 0.

(E) None of the other options.

The correct answers are
f is differentiable at (0, 0) ; fx(0, b) does not exist, but fy (0, b) exist,
where b 6= 0.
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Old Questions

Question 50.

Given f (x , y) =

{
x2 sin 1

y y 6= 0

0 y = 0
. Then

(A) f is differentiable at (0, 0).

(B) f is not differentiable at (0, 0).

(C) fx(a, 0) exists, but fy (a, 0) does not exist, where a 6= 0.

(D) Both fx(a, 0) and fy (a, 0) exist, where a 6= 0.

(E) None of the other options.

The correct answers are
f is differentiable at (0, 0) ; fx(a, 0) exists, but fy (a, 0) does not exist,
where a 6= 0.
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Old Questions

Question 51.

Given f (x , y) =

{
y2 sin 1

x x 6= 0

0 x = 0
. Then

(A) f is differentiable at (0, 0).

(B) f is not differentiable at (0, 0).

(C) fx(0, b) does not exist, but fy (0, b) exist, where b 6= 0.

(D) Both fx(0, b) and fy (0, b) do not exist, where b 6= 0.

(E) None of the other options.

The correct answers are
f is differentiable at (0, 0) ; fx(0, b) does not exist, but fy (0, b) exist,
where b 6= 0.
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Old Questions
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